
PlanIT: Planning and Instantiating Indoor Scenes with Relation Graph
and Spatial Prior Networks

KAI WANG, Brown University
YU-AN LIN, Brown University
BEN WEISSMANN, Brown University
MANOLIS SAVVA, Simon Fraser University
ANGEL X. CHANG, Simon Fraser University
DANIEL RITCHIE, Brown University

Fig. 1. We present PlanIT: a scene synthesis framework that unifies high-level planning of scene structure using a generative model over relation graphs with
lower-level spatial instantiation using neural-guided search with spatial neural network modules. We first generate a relation graph with objects at the nodes
and spatial or semantic relations at the edges (left images). Then, given the graph structure we select and place objects to instantiate a concrete 3D scene.

We present a new framework for interior scene synthesis that combines a
high-level relation graph representation with spatial prior neural networks.
We observe that prior work on scene synthesis is divided into two camps:
object-oriented approaches (which reason about the set of objects in a scene
and their configurations) and space-oriented approaches (which reason
about what objects occupy what regions of space). Our insight is that the
object-oriented paradigm excels at high-level planning of how a room should
be laid out, while the space-oriented paradigm performs well at instantiating
a layout by placing objects in precise spatial configurations. With this in
mind, we present PlanIT, a layout-generation framework that divides the
problem into two distinct planning and instantiation phases. PlanIT repre-
sents the “plan” for a scene via a relation graph, encoding objects as nodes
and spatial/semantic relationships between objects as edges. In the planning
phase, it uses a deep graph convolutional generative model to synthesize
relation graphs. In the instantiation phase, it uses image-based convolutional
network modules to guide a search procedure that places objects into the
scene in a manner consistent with the graph. By decomposing the problem in
this way, PlanIT generates scenes of comparable quality to those generated
by prior approaches (as judged by both people and learned classifiers), while
also providing the modeling flexibility of the intermediate relationship graph

Authors’ addresses: Kai Wang, Brown University; Yu-an Lin, Brown University; Ben
Weissmann, Brown University; Manolis Savva, Simon Fraser University; Angel X.
Chang, Simon Fraser University; Daniel Ritchie, Brown University.

© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3306346.3322941.

representation. These graphs allow the system to support applications such
as scene synthesis from a partial graph provided by a user.

CCS Concepts: • Computing methodologies → Computer graphics;
Neural networks; Probabilistic reasoning;

Additional Key Words and Phrases: indoor scene synthesis, object layout,
neural networks, convolutional networks, deep learning, relationship graphs,
graph generation

ACM Reference Format:
Kai Wang, Yu-an Lin, Ben Weissmann, Manolis Savva, Angel X. Chang,
and Daniel Ritchie. 2019. PlanIT: Planning and Instantiating Indoor Scenes
with Relation Graph and Spatial Prior Networks. ACM Trans. Graph. 38, 4,
Article 132 (July 2019), 15 pages. https://doi.org/10.1145/3306346.3322941

1 INTRODUCTION
People spend a large percentage of their lives indoors—in bedrooms,
living rooms, kitchens, etc. As computer graphics reproduces the real
world in increasing fidelity, the demand for virtual versions of such
spaces also grows. Virtual and augmented reality experiences often
take place in such environments. Online virtual interior design tools
are available to help people redesign their own spaces [Planner5d
2017; RoomSketcher 2017]. Some furniture design companies now
primarily advertise their products by rendering virtual scenes, as it
is faster, cheaper, and more flexible to do so than to stage real-world
scenes [Chaos Group 2018]. Finally, machine learning researchers
have begun turning to virtual environments to train data-hungry

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

https://doi.org/10.1145/3306346.3322941
https://doi.org/10.1145/3306346.3322941

132:2 • Kai Wang, Yu-an Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and Daniel Ritchie

models for computer vision and robotic navigation [Dai et al. 2018;
Das et al. 2018; Gordon et al. 2018; Lange 2018].

Given this interest in virtual indoor scenes and the large amount
of effort required to author them with traditional tools, a generative
model of such scenes would be valuable. Indeed, many researchers
have studied this problem of indoor scene synthesis over the past
decade. Two major families of approaches have emerged in this line
of work. The first family of models is object-oriented: they explicitly
represent the set of objects in the scene and their properties [Fisher
et al. 2012; Li et al. 2018a; Qi et al. 2018; Zhang et al. 2018]. The
second family of models is space-oriented: they instead treat space as
a first-class entity, modeling what occupies each point in space. Here,
space typically takes the form of a regular grid, as in recent image-
based scene synthesis models [Ritchie et al. 2019; Wang et al. 2018].
This modeling dichotomy is analogous to the division between
Lagrangian and Eulerian simulation methods.

Each approach has strengths and weaknesses. The object-oriented
paradigm facilitates explicit reasoning about objects as discrete
entities, supporting symbolic queries such as “generate a scene with
a chair and two tables.” This representation also facilitates detecting
and exploiting high-level arrangement patterns, such as symmetries.
However, because object-oriented approaches abstract away low-
level spatial details (such as the precise geometry of the objects
and the architecture of rooms), they can struggle with fine-grained
arrangement. Space-oriented systems, by contrast, excel at complex
low-level spatial reasoning (supporting arbitrarily shaped rooms
and irregular object geometry) but often miss high-level patterns
and do not support symbolic queries.
In this paper, we propose PlanIT, a new conceptual framework

for layout generation that unites the object-oriented and space-
oriented paradigms to achieve the best of both worlds. Specifically,
PlanIT plans the structure of a scene by generating a relationship
graph, and then it instantiates a concrete 3D scene which conforms
to that plan. Relationship graphs help our system reason symboli-
cally about objects and their high-level patterns. In a relationship
graph, each node represents an object, and each directed edge rep-
resents a spatial or functional relationship between two objects. We
learn a generative model of such graphs which can be sampled to
synthesize new high-level scene layouts. Then, given a graph, we
use a set of image-based (i.e. space-oriented) models to instantiate
the high-level relationship graph into a low-level collection of ar-
ranged 3D objects. Each part of the system focuses on the domain
at which it excels: the graph-based module reasons about which
objects should be in the scene and their high-level arrangement
patterns, while the image-based modules determines precise place-
ments, orientations, and object sizes. This pipeline can be viewed as
an abstraction hierarchy: we first synthesize an abstract scene (i.e.
a graph), and then we synthesize a concrete scene conditioned on
the abstract representation. We believe that this multi-resolution
modeling approach is a better match to the nature of real scenes
(high-level structural variation in arrangements, and low-level de-
tails in objects) and also mirrors the human thought process when
designing and laying out spaces (starting from overall object layouts
in a room, and then placing individual objects). Moreover, the graph
is a useful intermediate representation for many applications that
involve composition, editing, and manipulation of scene structure.

While we focus on the domain of indoor scene synthesis in this
paper, we believe that PlanIT’s “plan-and-instantiate” framework
has broader applicability to other layout-generation problems in
computer graphics.

Our system starts with a large set of unstructured 3D scenes and
automatically extracts relationship graphs using geometric and sta-
tistical heuristics. To instantiate these graphs into concrete scenes,
we use a neurally-guided search procedure building upon convolu-
tional neural network (CNN)-based scene synthesis modules from
recent work [Ritchie et al. 2019]. To learn how to generate the graphs
themselves, we again leverage convolution as an operator for cap-
turing context. However, instead of spatial context (in the form of
image neighborhoods), we capture symbolic relational context via
graph convolutional networks (GCN). We use a GCN-based genera-
tive model of scene relationship graphs which builds on recent work
on deep generative models of graphs [Li et al. 2018b]. Our pipeline
can be used to synthesize new scenes from scratch, to complete par-
tial scenes, or to synthesize scenes from a complete or partial graph
specification. The latter paradigm has applications both for rapid,
accessible scene design as well as for generating custom-tailored
training environments for vision-based autonomous agents.
Our unified scene synthesis pipeline generates scenes that are

judged (by both learned classifiers and people) to be of comparable
quality to scenes generated by prior methods that are either space-
oriented or object-oriented. We also demonstrate that our pipeline
enables applications such as generating 3D scenes from partially
specified scene graphs, and generating custom 3D scenes for training
robotics and vision systems.

In summary, our contributions are:
(1) A novel “plan-and-instantiate” conceptual framework for lay-

out generation problems, and a concrete implementation of
this framework for the domain of indoor scene synthesis.

(2) A formulation of relationship graphs for indoor scene layouts
and a heuristic procedure for extracting them from unstruc-
tured 3D scenes.

(3) An introduction to deep generative graph models based on
message-passing graph convolution, and a specific model
architecture for generating indoor scene relationship graphs.

(4) A neurally-guided search procedure for instantiating scene re-
lationship graphs, using image-based scene synthesis models
augmented with an awareness of the input graph.

Source code and pretrained models for our system can be found at
https://github.com/brownvc/planit.

2 BACKGROUND & RELATED WORK
We discuss related work in scene synthesis, scene graph representa-
tions for related problems, and graph generative models.

Indoor Scene Synthesis: There is a long line of work addressing
3D scene synthesis. Early work used a rule-based constraint satisfac-
tion formulation to generate 3D object layouts for pre-specified sets
of objects [Xu et al. 2002]. Other approaches were based on optimiza-
tion of cost functions derived from interior design principles [Mer-
rell et al. 2011] and object–object statistical relationships [Yu et al.
2011]. The earliest data-driven work modeled object co-occurrences

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

https://github.com/brownvc/planit

PlanIT: Planning and Instantiating Indoor Scenes with Relation Graph and Spatial Prior Networks • 132:3

using a Bayesian network, and Gaussian mixtures for pairwise spa-
tial relation statistics extracted from 3D scenes [Fisher et al. 2012].
Followup work has used undirected factor graphs learned from
annotated RGB-D images [Kermani et al. 2016], relation graphs be-
tween objects learned from human activity annotations [Fu et al.
2017], and directed graphical models with Gaussian mixtures for
modeling arrangement patterns [Paul Henderson 2018]. Other work
has focused on conditioning the scene generation using input from
RGB-D frames [Chen et al. 2014], 2D sketches of the scene [Xu et al.
2013], natural language text [Chang et al. 2015; Ma et al. 2018b], or
activity predictions on RGB-D reconstructions [Fisher et al. 2015].

More recently, with the availability of large datasets of 3D environ-
ments such as SUNCG [Song et al. 2017], learning-based approaches
have become popular. A variety of approaches have been proposed
using: human-centric probabilistic grammars [Qi et al. 2018], Gen-
erative Adversarial Networks trained on a matrix representation
of present scene objects [Zhang et al. 2018], recursive neural net-
works trained to sample 3D scene hierarchies [Li et al. 2018a], and
convolutional neural networks (CNNs) trained on top-down image
representations of rooms [Ritchie et al. 2019; Wang et al. 2018]. Our
system uses the fast CNN modules of the latter image-based method
to instantiate relationship graphs, modified significantly to work
with a relationship graph as input.

Scene Graph Representations: Representing scenes as graphs of
semantic relationships (encoded as edges) between objects (encoded
as nodes) is an elegant methodology with applications to a variety
of domains. It has been used for text-to-scene generation [Chang
et al. 2014]. Other work in graphics has used a small dataset of man-
ually annotated scene hierarchies to learn a grammar for predicting
hierarchical decompositions of input 3D scenes [Liu et al. 2014]. In
computer vision, semantic scene graphs were popularized by the
Visual Genome project which collected a large dataset of image
scene graph annotations [Krishna et al. 2017]. Subsequent work has
focused on generating scene graphs from images [Li et al. 2017; Lu
et al. 2016; Xu et al. 2017; Yang et al. 2018; Zellers et al. 2018], using
scene graphs for image retrieval [Johnson et al. 2015], generating
2D images given an input scene graph [Johnson et al. 2018], and
improving the evaluation of image captioning [Anderson et al. 2016].
This diversity of applications is enabled by the generality of the
scene graph representation, and is one of our main motivations for
incorporating a graph representation in our approach. In contrast to
prior work, we focus on demonstrating that our unified formulation
that combines a relation graph generative model with image-based
neural networks enables us to improve 3D scene synthesis.

Graph Generative Models: Recently, there is an exciting line of
work on defining graph–structured neural networks and using
them to learn a generative models of graphs. Some of the earliest
work in graph processing with neural networks proposed a graph
convolutional neural network (GCN) to perform graph classifica-
tion [Kipf and Welling 2016]. Other work has used a GCN approach
for skeleton-based action recognition [Yan et al. 2018]. Our graph
generative model uses a formulation of GCNs based on message
passing between nodes in a graph [Gilmer et al. 2017]. It specifically
builds on a recently-developed autoregressive generative model

for arbitrary graphs using the message-passing approach [Li et al.
2018b]. Other recent work proposes a recurrent architecture for
graphs, targeted at applications involving large network graphs [You
et al. 2018b]. Our overall scene synthesis approach is based on com-
bining a GCN-based generative model over 3D scene relationship
graphs with image–based CNN modules. To our knowledge, we
are the first to apply a deep generative graph model in computer
graphics in general and to 3D scene synthesis in particular.

3 OVERVIEW
In this paper, we tackle the scene synthesis problem: given the ar-
chitectural specification of a room (walls, floor, and ceiling) of a
particular type (e.g. bedroom), choose and arrange a set of objects
to create a plausible instance of that type of room. In doing so, we
aim to build a system that can support a range of use cases. In ad-
dition to synthesizing a scene from an empty room, it should also
complete partial scenes. Furthermore, it should accept a high-level
specification for what should be in the room in the form of a partial
or complete relation graph. For example, our system should support
the query “give me a bedroom with a desk and a television, where
the desk is to the left of the bed.” Our approach to the problem is
to decompose it into two steps. First, our system generates a re-
lation graph. This graph encodes major salient relationships that
characterize a scene layout but does not completely specify a scene.
However, it does provide a strong signal from which to generate
one or more instantiations of the graph.
We start by automatically extracting relation graphs from un-

structured 3D scenes, using geometric rules and the statistics of
a large database of scenes to decide what relationships exist and
which ones are most salient (Figure 2 Left). Section 4 describes this
process, as well as our graph representation, in more detail.

Next, we use this corpus of extracted graphs to learn a generative
model of graphs (Figure 2 Middle). Our generative model takes an
input graph that is either empty (i.e. containing only nodes and edges
representing room architecture features such as walls) or partially
occupied with objects, and generates additional nodes and edges to
complete the graph. Our model is a deep generative model that uses
a form of discrete convolution on graphs as its primary operator. It
is based on an architecture which was applied to generate simple
graphs in other domains, e.g. molecule structures [Li et al. 2018b].
Section 5 describes this model in more detail.
With a complete graph in hand, the final step in our pipeline is

to instantiate the abstract graph into a concrete scene by choosing
and placing 3D models which respect the objects and relationships
implied by the graph (Figure 2 Right). There are many possible meth-
ods one could use to search for concrete scene layouts consistent
with a relation graph. Since the scene layout process involves low-
level spatial reasoning, we opt to use image-based neural network
modules to guide our search. Using neural networks provides ro-
bustness to the noise present in relation graphs both in the training
data and for the output graphs of our generative model. We adapt
modules from recent work on scene synthesis [Ritchie et al. 2019],
modifying them to take the graph as input and to attempt to adhere
to the structure that it mandates. Section 6 describes these modules,
and our overall scene instantiation search procedure, in more detail.

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

132:4 • Kai Wang, Yu-an Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and Daniel Ritchie

Extract Relationship Graphs (Section 4)

Scenes

Graph Generation (Section 5)

Empty or Partial Graph Complete Room Graph

Scene Instantiation (Section 6)

Partial Scene Image Representation Scene w/ New Object

Location?

Orient?

Size?

Model?

Training Data for Graph Generation and Scene Instantiation Modules

Iterate

Graphs

Fig. 2. Our scene synthesis pipeline. We automatically extract relation graphs from scenes (Section 4), which we use to train a deep generative model of such
graphs (Section 5). In this figure, the graph nodes are labeled with an icon indicating their object category. We then use image-based reasoning to instantiate a
graph into a concrete scene by iterative insertion of 3D models for each node (Section 6).

4 TURNING SCENES INTO RELATION GRAPHS
In this section, we motivate and define our relation graph represen-
tation, and we describe a procedure for automatically extracting
these graphs from unstructured 3D scenes.

4.1 Dataset
For all of our experiments, we use the SUNCG dataset, a collection
of over forty thousand scenes designed by users of an online interior
design tool [Song et al. 2017]. From this raw scene collection, we
extract rooms of five common types: bedrooms, living rooms, bath-
rooms, and offices. We also perform pre-processing on these rooms
to filter out mislabeled rooms, remove uncommon objects, etc., us-
ing a procedure based on one from prior work [Ritchie et al. 2019].
Our filtering procedure additionally removes rooms that are not
closed (i.e. are not encircled by a closed loop of walls), as our graph
representation requires this to be the case (Section 4.2). This results
in 5900 bedrooms (with 41 unique object categories), 1100 living
rooms (37 categories), 6400 bathrooms (26 categories), 1000 offices
(37 categories), and 1900 kitchens (39 categories). These rooms are
represented as a flat list of objects (with category label, geometry,
and transformation); they contain no information about structural,
functional, or semantic relationships between objects.

4.2 Graph Representation
We encode relationships between objects in the form of a directed
relation graph. In this graph, each node denotes an object, and each
edge encodes a directed spatial or functional relationship from one
object to another. Each node is labeled with an object category (e.g.
wardrobe) and a functional symmetry type. Functional symmetry
refers to an object having multiple semantically-meaningful “front”
directions, e.g. an L-shaped sectional sofa has two potential “front”
directions, regardless of whether the sofa has a precise geometric
symmetry). This determines the configurations in which the object
can be placed while still serving the same function. Figure 3 shows
examples of the symmetry types we capture in our graphs.

Relationship Edges: Edges in the relation graph capture impor-
tant constraints between objects: that two objects must be related in

some way due to physical laws or functional use. For physical plau-
sibility, our graphs include support edges: edgeA→ B implies that
object B is physically supported by object A (e.g. a lamp supported
by a table). To capture arrangement patterns that reflect functional
use, graphs also include spatial edges: A→ B implies that object B
is placed at some distance away from object A, in some direction
relative to object A (e.g. an ottoman in front of a chair). We further
subdivide spatial edges into multiple subtypes, defined as the Carte-
sian product of four direction types (front, back, right, left) and
three distance types (adjacent, proximal, distant) for a total of
12 spatial edge types. Directions are defined in the local coordinate
frame of the edge start node. We use discrete distance types because
people use such terms when describing spatial relationships, sug-
gesting that there may be salient categorical differences between
different distance levels. Figure 4 shows some examples of different
relationship types.

Representing the room architecture: The architectural geome-
try of the room influences the layout of objects within it and thus
must also be modeled in the relation graph. We represent this ge-
ometry with additional nodes, one for each linear wall segment,
connected by a bi-directional loop of adjacent edges (a bi-directional
edge pair represents a conceptually undirected edge). Nodes for
walls on opposite sides of the room are also connected to further
encode the room shape in the graph structure. Wall nodes also store
the length of the wall segment, and wall → wall edges carry an
additional attribute for the angle between the two adjacent walls.
Doors and windows are represented as nodes adjacent to their re-
spective wall(s). We do not include a floor node because it adds no
meaningful information (any object without a supporting node is
on the floor) and it over-connects the graph (every floor-supported
object is just two hops away from every wall).

4.3 Graph Extraction
To convert a scene into the above graph representation, we use
geometric heuristics to extract a superset of possible relationships
that may exist between objects. We then use additional geometric

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

PlanIT: Planning and Instantiating Indoor Scenes with Relation Graph and Spatial Prior Networks • 132:5

left-right front-back rotational-2 rotational-4 corner-left corner-right radial

Fig. 3. Possible types of functional symmetries with which graph nodes can be labeled, along with an example object of that symmetry type.

left
adjacent

back proximal

left
distant

front adjacent

right
proximalsupported

Fig. 4. Relationships modeled by the edges in our relation graphs. We define
support edges for statically supported child nodes, and the four spatial
edges front, left, right, and back, at three distances: adjacent, proximal and
distant. The hue of each arrow indicates the relationship direction, and the
saturation indicates distance. Supported nodes are outlined in green. We
use this same color scheme throughout all figures in this paper.

and statistical heuristics to refine this set to reflect only the most
meaningful relationships.

Functional symmetries: Each object node requires a functional
symmetry type label. Wemanually label all 3Dmodels in the SUNCG
dataset, as the number of models in the dataset is not prohibitively
large (∼ 2600 models across all categories).

Support edges: For each object, we identify potential supporting
parent objects by tracing a ray outwards from the bottom of the
object’s bounding box up to a threshold distance of 10 cm. If there
are multiple potential supporting objects, we select the object that
has the largest supporting surface. We break support edge cycles by
unparenting the largest object in the cycle.

Spatial edges:We check for each possible direction of a spatial edge
A→ B by raycasting from the four sides of the oriented bounding
box (OBB) of A (projected into the XY plane). For an intersected
object B to contribute an edge to the graph, at least 30% of the object
must be visible from A (determined by the interval overlap of B’s
OBB onto A’s OBB). If this condition is satisfied for multiple direc-
tions between A and B, we pick the one with the highest visibility.
Since radially symmetric objects have no meaningful orientation,
all relationships in which A is radially-symmetric are given the la-
bel front. Distance labels are determined by the distance between
the two objects’ OBBs: adjacent if A is within two inches of B or
within 5% of the largest diagonal of the two objects (whichever

Fig. 5. Graphs before (left) and after (right) the detection of superstructures.
Hub-and-spoke and chain superstructures are indicated with yellow and
brown bounding boxes around member nodes, respectively. Superstructures
organize relationships more compactly (e.g. the chains of kitchen cabinets
along the walls and the chairs relative to the dining table).

is smaller), proximal if A is within 1.5 feet or 10% of the largest
diagonal (whichever is larger), and distant otherwise.

Detecting “superstructures”: Indoor scenes often contain func-
tional groups of objects; our graphs should contain these structures
so that generative models can learn to capture them. These groups
can be detected by searching for “superstructure” patterns in the
extracted relation graph.

We detect two types of such superstructures in our graphs: hub-
and-spokes and chains. A hub-and-spokes is defined by a larger object
surrounded by multiple instances of a smaller object (e.g. a bed
between two nightstands; a table surrounded by chairs). A chain
is defined by a series of objects arranged along a line (e.g. a row
of wardrobes against a wall). Figure 5 shows an example of each
of these types of superstructures, and Appendix A describes our
heuristics for extracting them in detail.

There are other high-level structures we could try to detect that
have been exploited in other graphics domains, e.g. grids for in-
verse procedural model applications [Bokeloh et al. 2010], but such
patterns do not occur frequently in our data.

Edge pruning: The graphs as extracted thus far are dense (average
of 4 edges per node across all rooms in our dataset), containing many

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

132:6 • Kai Wang, Yu-an Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and Daniel Ritchie

Room Type # Nodes # Nodes (non-wall) # Edges # Edges (non-wall)

Bedroom 14.47 10.15 26.43 4.77
Living 14.43 10.12 25.90 4.61
Office 13.93 9.68 25.63 5.41
Bathroom 10.64 6.43 21.36 0.99
Kitchen 15.90 11.53 32.38 8.60

Table 1. Average node and edge count statistics for graphs extracted from
SUNCG rooms using the automatic procedure from Section 4. “Non-wall”
edges are those where neither endpoint is a wall.

Fig. 6. Examples of relation graphs extracted from training set scenes.

spatially-true but not semantically-meaningful relationships. This
density poses two problems for learning a graph generative model.
First, very dense graphs will slow down training. Second, and more
critically, dense graphs can confuse a neural network model by (1)
failing to recognize the most important structural relationships (i.e.
it “loses the signal in the noise”) or (2) predicting edges which are
not self-consistent, i.e. it is impossible to spatially realize the graph.
Thus, we prune away ‘insignificant‘ edges from the extracted graphs,
keeping only those that reflect the most meaningful relationships.
We do this pruning heuristically: some edges are always kept or
always deleted based on heuristics about object functionality, and
other edges may be kept if they occur frequently enough across
the whole dataset of rooms. Appendix A describes our pruning
procedure in detail.

Guaranteeing connectivity: Edge pruning may make the graph
disconnected, i.e. there exists no directed path from the wall nodes to
one or more object nodes. As we will describe in Section 6, our scene
synthesis process iteratively inserts objects with an inbound edge
from an object already in the scene. Since this process can start with
only walls in the scene, a scene is not synthesizable if its graph is
disconnected. To solve this problem, we find all unreachable nodes
and reconnect them to the rest of the graph using a minimum-cost-
path-based approach described in Appendix A.

Table 1 shows some statistics for our extracted graphs. Figure 6
shows some example scenes and the graphs extracted from them.

5 GRAPH GENERATION
Our goal is now to learn a generative model from our extracted
graphs. Graph generation is a long-studied problem [Erdos and
Renyi 1960; Rozenberg 1997]. It is currently experiencing a renais-
sance driven by deep neural network models. Highly-quality graph
generative models have the potential for high impact in computer
graphics, as many of the objects graphics researchers study can be

naturally represented as graphs: graphic design layouts, urban lay-
outs, curve networks, triangle meshes, etc. To our knowledge, we are
the first to apply deep generative graph models to a computer graph-
ics problem. Thus, the goals of this section are twofold. First, we in-
troduce the class of graph generative model we use—autoregressive
generation based on message-passing graph convolution—to the
graphics community. Second, we describe a specific implementation
of this type of generative model with domain-specific design choices
for indoor scene relationship graph synthesis.

5.1 Autoregressive Graph Generation via Message-Passing
Graph Convolution

Our approach to graph generation is based on the framework in-
troduced by [Li et al. 2018b]; for clarity, we highlight the core
components of this approach here. The idea behind autoregressive
graph generation is to construct a graph via a sequence of structure-
building decisions, where each decision is computed as a function of
the graph that has been built thus far. Specifically, one can construct
a graph by iterating the following sequence of decisions:

(1) Should a new node u be added to the graph? If no, then
terminate. If yes:

(2) Should a new edge be connected to u? If no, go to (1). If yes:
(3) Which other node v in the graph should u be connected to?

Choose one, then go to (2).
On what basis should the generator should make these decisions?
Ideally, it would have some way to “look” at the current state of the
graph and make a decision based on what it “sees.” For image-based
generative models, a convolutional neural network (CNN) provides
this capability: a CNN can ingest an image and output a distribution
over decisions. An image can be interpreted as a graph whose nodes
are pixels and whose edges form a regular 2D lattice over these
pixels. If we instead use irregularly-structured graphs, is there a
way to generalize convolution (and thus CNNs) to operate on such
data? The formulation we use is message passing graph convolution,
which has the following steps:

Initialization

!"

#init
'"

Graph properties are represented either as a node fea-
ture xu , describing the properties of the node, or an edge
feature xuv , describing relationships between the end-
points of the edge. The graph convolution process uses
and updates these properties. For brevity, we consider the
version that only updates the node features. To facilitate
such update, it is most natural to use a initializer to map the visi-
ble node feature xu into a latent representation hu = finit(xu , . . .),
taking the node feature, as well as additional features such as a
description of the entire graph, as inputs.

Propagation Similarly to image convolution, graph convolution
aggregates information from proximal nodes in the graph. To do so,
the following steps are executed:

!"

#msg
'"(

!()"(
Compute edge messages: Information propaga-

tion in the graph follows edges, which define prox-
imities in the graph. A message function fmsg is
used to computed the propagated message muv

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

PlanIT: Planning and Instantiating Indoor Scenes with Relation Graph and Spatial Prior Networks • 132:7

Wall

WallWall

Wall

Summarize

!"

Add Node?

Node Category (or STOP)

Attributes

Symmetry + Superstructure

Wall

WallWall

Wall

Bed
!# Add Edge?

Edge Type + Direction (or STOP)

Wall

WallWall

Wall

Bed$% =
{front-p

roximal,

' →)}* = bed

+ =
{left-right,

hub}

!#

!,
Init Node

Fig. 7. Overview of the graph generation pipeline. We start from nodes and edges describing the architecture of the room and iteratively add new nodes and
edges with a sequence of decision modules that predicts the category of the new node, the symmetry and superstructure type of the new node, and the edges
incident to the newly added nodes.

from the edge feature xuv and the latent node fea-
tures hu , hv . If the edge is directed, the order in
which inputs are supplied identifies the direction of the edge.

𝒉𝑢
′

𝒎𝑢𝑣1

𝒎𝑢𝑣2
𝒎𝑢𝑣3

+

Aggregate messages. To actually propagate the
computed messages, they are gathered at the
nodes incident to their associated edges. Since a
node can have varying degree, an operation is
needed to map the messages to an aggregated
message h′u with a fixed dimension. This is often
done by summing up the messages, though other
order-invariant n-ary operations such as mean can also be used.
For a directed graph, only the end node of the edge receives the
message. Thus, it is often desirable to also have a second function
f ′msg that computes messages in the reverse direction.

GRU

!" !"#
Update node state. Finally, the aggregated message

h′u is used to update the latent node representation hu .
Since we want to keep the latent representation con-
sistent across different steps in the generative model,
we use a Gated Recurrent Unit as the update function.

Summarization

!"#

!"$

!"%
&
⨀

&
⨀

&
⨀

+
!)

In addition to aggregated features at nodes,
many tasks require an overall description
hG of the entire graph. Such a description
can be constructed by computing a feature
vector for each node, and summing these
vectors directly. As different nodes can bear
different importance to the entire graph, a
gated sum is often used, where a gate func-
tion σ is computed and multiplied with each
node vector before summing up.

5.2 Generative Model of Scene Relationship Graphs
Our approach to generating scene relationship graphs uses the above
building blocks. In particular, we largely follow the design of [Li
et al. 2018b], where a series of structural decision modules are used
to add new nodes and new edges to the graph in an autoregressive
fashion, until completion.

Feature Representation and Initialization Nodes and edges in
our graph belong to two major categories. Architectural nodes and

edges define the room architecture. We always initialize our graph
with these, and never predict additional instances. Object nodes,
and edges connected to them, describe the room layout we want
to predict. Table 2 summarizes the input features used for different
types of nodes and edges. We use separate finit functions for archi-
tectural and object nodes to map their different feature sets to the
same latent space. For edge features xuv , information not present
(e.g. angle between walls for non-wall edges) is set to 0.

Structure Building Modules Fig 7 shows our pipeline. Starting
with architectural nodes and edges, we use several decision modules
to iteratively build the graph:

Add Node? At each step, we first predict what node to add. This
module performs T rounds of propagation, then applies a neural
network fadd to predict a discrete distribution over the possible
object categories from the graph representation hG . We also include
a “STOP" category which indicates that no more nodes should be
added. This module is similar to the image-based category prediction
module of prior work [Ritchie et al. 2019]. However, instead of
training the module to always pick categories in the same order,
we found that a random ordering is sufficient for this task. Random
ordering has the benefit of supporting partial graph completion
starting from any set of nodes.

Attributes. In addition to the node’s category, we also need to
know its symmetry type, and whether it belongs to a superstructure.
To do so, we apply another neural network fsym to predict a dis-
crete distribution over all possible combinations of symmetry and
superstructure types from the same graph representation hG used
in the previous step. To condition on the predicted object category,
we use separate network weights for each category.

Add Edge? Finally, we add the new node to the graph and deter-
mine the edges incident to it. We use a neural network fedge which
takes as input node features hu ,hv for the new node v and existing
node u and outputs log probabilities for adding each possible type
of edge between those nodes. We compute these log probabilities
for all existing nodes u, concatenate them into one distribution, and
sample from it. Unlike prior work [Li et al. 2018b], we do not break
this step into two modules: Should Add Edge? and Which Edge?.
Instead, we append to the concatenated logits an additional fixed-
value logit indicating “STOP." We do so because we find that the
predictions of these two modules are often inconsistent: the module
can decide to add a new edge but have a high entropy distribution of

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

132:8 • Kai Wang, Yu-an Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and Daniel Ritchie

Object Type Included Features

Architectural xu Category, Length (walls only)
Object xu Category, Symmetry type, Superstructure type

Architectural xuv Distance, Direction, Angle between walls
Other xuv Distance, Direction, Support

Table 2. Information our model consumes and/or predicts for different types
of nodes and edges in the graph.

possible edges to add. This step is iterated until the network decide
that no more edges should be added. Before each iteration, an addi-
tional T rounds of propagation is performed. We also use separate
network weights for object-architecture edges and object-object
edges, since those edges behave differently. Finally, at test time, we
reject sampled edges that never occur in the dataset, though this is
rare.

Implementation Details We use T = 3 rounds of propagation
everywhere, and we use a three layer MLP for all structural decision
modules. We also use a three layer MLP for fmsg during propagation,
instead of the single linear layer suggested by [Li et al. 2018b], as
this performed significantly better in our experiments. All MLPs
used a hidden layer size of 384. For additional robustness, we include
the one-hot node representation xu in addition to the latent hu as
input when computing messages, and we include the full graph
representation hG when computing per-node edge distributions.

Figure 8 shows some graphs generated by this model. They capture
important high-level structural patterns and are generally spatially
consistent (the next section evaluates this more thoroughly). Occa-
sionally, the model generates inconsistent results. We reject obvious
failures cases where the graph is disconnected, acyclic, or contains
inconsistent chains. We also address some of the more subtle spatial
inconsistencies in the instantiation process, discussed in the follow-
ing section. Still, most of these issues could be better resolved by
adopting a more sophisticated graph generative model, instances
of which are rapidly emerging. For example, a model which cou-
ples all structure-building decisions through a global latent variable
could increase global coherence [Jin et al. 2018]. One could also use
reinforcement learning to force the model’s output to be spatially
realizable [You et al. 2018a].

6 SCENE INSTANTIATION
In this section, we describe our procedure for taking a relationship
graph (either generated or manually-authored) and instantiating
it into an actual 3D scene. Due to the edge pruning steps taken in
Section 4, the graphs from which our graph generative model learns
(and thus the graphs that it learns to generate) are not complete
scene specifications: in general, a graph does not contain enough
relationship edges to uniquely determine the spatial positions and
orientations of all object nodes. Rather, there is a set of possible
object layouts which are consistent with the graph. In other words,
the graph defines a set of constraints, and instantiating a layout
that satisfies them requires solving a constraint satisfaction problem
(CSP). Furthermore, not all scenes within this feasible set are created

Fig. 8. Scene relationship graphs generated by our model.

equal; some will appear more plausible than others. Specifically,
some feasible scenes will respect commonsense layout principles
that do not appear in the graph but nevertheless must be followed
to ensure plausibility. Thus, we require some kind of prior over
scenes to plausibly fill in these gaps left unspecified by the graph.
Put another way, we seek not any feasible scene, but rather themost
probable scenes from within the feasible set.
More formally, we require a procedure for sampling from the

following conditional probability distribution:

p(S|G(V ,E)) = p(S) ·
∏
v∈V

1(v ∈ S) ·
∏

(u,v,r)∈E
r (S, u, v) (1)

where S is a scene, G(V ,E) is a graph with vertices V and edges E,
and r (·) is a predicate function indicating whether the relationship
implied by the edge (u, v, r) is satisfied in S. The conditional proba-
bility factors as the product of the prior probability over scenes p(S)
(which is implied by the dataset) and a product of {0, 1} constraint
indicator functions. With multiple constraints, much of the work
involved in sampling this distribution is in finding a scene S with
nonzero probability. For this, we adopt a backtracking search strat-
egy, as is common for CSP solving: we instantiate objects one at a
time until some relationship constraint is violated, at which point
we roll back one or more steps and retry. Within this framework,
we also require (a) a means of selecting values for an object’s spatial
configuration variables (position, orientation, size), and (b) a way to
evaluate p(S). Here, we kill two birds with one stone: we generate
configuration values via neural nets which are trained to sample
from an approximation of the conditional probability in Equation 1.
This makes our instantiation algorithm a neurally-guided search
procedure [Ritchie et al. 2016; Vijayakumar et al. 2018].

The rest of this section explains the design decisions behind our
search procedure: the order in which to instantiate, the neural nets
used to sample object configurations, and our backtracking strategy.

6.1 Object Instantiation Order
The order in which a CSP solver assigns values to variables has
significant impact on its performance. A common ordering strategy
is the Most Constrained Variable (MCV) heuristic: assign values

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

PlanIT: Planning and Instantiating Indoor Scenes with Relation Graph and Spatial Prior Networks • 132:9

to variables that participate in the most constraints first [Russell
and Norvig 2009]. The intuition here is that such assignments will
cause the search to “fail fast,” allowing it to correct an infeasible
assignment to one or more of those variables without requiring
significant backtracking.

Our algorithm for determining the order in which to instantiate
objects follows a similar logic. It uses the structure of the graph,
along with statistics about typical sizes for nodes of different cate-
gories, to determine an ordering that leads to fast failure and mini-
mizes backtracking. Most of these principles are not specific to the
indoor scene domain and would be valid for many constraint-based
spatial layout problems with constraints derived from a graph.

Ordering preliminaries:We require that our ordering algorithm
sort scene objects topologically: an object cannot be instantiated
until all its inbound neighbors which constrain its placement have
also been instantiated. Among the different possible topological
sorts, we additionally require that ours follows a depth-first ordering:
when a node is added to the scene, all of its descendants must be
added before any of its non-descendants. This requirement leads to
insertion orders that “grow” inward from the walls, which is more
likely to instantiate coherent sub-parts of the scene together (and
which we exploit during backtracking.

Constraint-based ordering: For most graphs, there exist many
possible orderings that satisfy the above requirements. Thus, we
additionally sort nodes based on how constrained they are. This
measure is based on the number of inbound edges to a node, as an
object with a specified location relative to multiple other objects has
fewer possible valid placements. Specifically, we define the score
C→(v) to be the weighted sum of node v’s inbound edges, where
adjacent, proximal, and distant edges are weighted in a 3:2:1 ratio.
For nodes with the same C→ score, we break ties based on which
node would be most constraining if it were to be instantiated next.
We define a second score C←(v) as:

C←(v) =
∑

u∈DG [v]
C→(u) · E[Size(u)]

where DG[v] are the (inclusive) descendants of v and the expected
value of the size of a node is the average 2D projected bounding
box area of objects of that node’s category in the dataset. In other
words, a node is very constraining if instantiating it would lead to
the insertion of many large objects which are themselves highly
constrained (i.e. have relatively fixed positions).

Domain-specific ordering principles: We use a few ordering
principles which are specific to indoor scenes. First, we impose
additional requirements on the object insertion ordering to preserve
the integrity of superstructures. When a hub node is added to the
order, we add its spoke nodes before any other outbound neighbors.
When a chain start node is added, we add all the nodes in the chain,
followed by the union of their descendants. In addition, we place all
second-tier (i.e. supported) objects after all first-tier objects.

We note that prior scene synthesis methods which iteratively con-
struct scenes object-by-object have also had to contend with the

object-ordering problem. At least one prior work has used a random
ordering of objects [Wang et al. 2018]. Another possibility is to use
an ad-hoc “importance” order, i.e. ordering objects by a combination
of their size and frequency in the dataset [Ritchie et al. 2019]. The
latter strategy can be seen as a form of Most Constrain(ing) Variable
heuristic. Our graph-based representation provides a richer set of
information from which to derive a more sophisticated ordering.

6.2 Neurally-Guided Object Instantiation
Once we have selected an object of category c to add to the scene, as
prescribed by the ordering above, we must propose a configuration
for it: its location x , orientation θ , and physical dimensions dxy .
Ideally, we seek a generator functionд(x,θ , dxy |c,S,G(V ,E))which
outputs values with probability proportional to the true conditional
scene probability p(Ŝ = S ∪ {(c, x,θ , dxy)}|G(V ,E)) in Equation 1.
In other words, we need to design an importance sampler for p.
As in prior work on scene synthesis by iterative object inser-

tion [Ritchie et al. 2019], we decompose the configuration generator
as д(x,θ , dxy |·) = д(dxy |θ , x, ·)д(θ |x, ·)д(x|·) according to the chain
rule, i.e. we sample location, then orientation, then dimensions.

Location Since p factorizes as the product of the scene prior proba-
bility p(S) and the constraint functions, one possible strategy is to
use a learned prior over object locations in scenes for д(x|·). For our
prior, we adopt the location prediction module from [Ritchie et al.
2019], which is a state-of-the-art image-based prior over scenes. It is
a fully-convolutional network (FCN) that takes as input a top-down
view of the scene S and produces an image-space probability distri-
bution over possible locations for the next object to insert. While
this is a good importance sampler for p(S), it is far from ideal when
used to sample the conditional distribution in Equation 1, as many
proposed locations will violate the constraints (Table 3).
We would prefer our importance sampler д(x|·) to respect con-

straints by construction, rather than by rejection. To do this, we
modify the FCN architecture of [Ritchie et al. 2019] to be aware of
the relationship graph. Figure 9 shows a schematic of this archi-
tecture. Rather than predicting a location distribution for a target
object in the absolute coordinate frame of a scene image, it predicts
a distribution in a local coordinate frame relative to one of that
object’s inbound neighbors in the graph; we call these neighbors
anchors. Furthermore, the FCN takes an additional input in the form
of the type of relationship edge between the anchor and the target
(e.g. left, adjacent), turning it into a conditional FCN (CFCN). This
additional input is injected into the network via Featurewise Linear
Modulation (FiLM), a process that applies a learned scale and shift
to the output of every convolutional layer [Perez et al. 2018]. If
there is more than one anchor object, the module predicts a relative
location distribution for each of them, transforms these into the
global coordinate frame, and combines them via multiplication and
renormalization (Figure 10). This local location prediction strategy
can be seen as a form of visual attention [Xu et al. 2015], supervised
by the structure of the graph. Conditioning the network to be graph-
aware in this way significantly reduces the percentage of proposed
locations which violate constraints (Table 3, Figure 11).

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

132:10 • Kai Wang, Yu-an Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and Daniel Ritchie

Input Scene Image

256

25
6

Edge Type
Front, Adjacent

Edge Type
Embedding Matrix

ResNet-34
128 64 32 16 8 4

Location Distribution

128

128

Fully Connected Layer

C
onv 4x4~ 45 1512 256

U
psam

ple

C
onv 3x3

FiLM

Leaky R
eLU

10

Input Scene Image
+

CHAIR

Fig. 9. Architecture of our graph-conditional location prediction network. We use a fully-convolution network (FCN) architecture to predict a 2D distribution
of possible object locations, in the relative coordinate frame of an anchor object (orange region in the input image). The network’s output is conditioned on a
type of relationship edge via featurewise linear modulation (FiLM) [Perez et al. 2018]. The network simultaneously predicts distributions for all categories;
here we visualize the slice for “chair.”

Anchor 1 (Bottom wall) Anchor 2 (Right wall) Combined

Anchor 1 (Bed) Anchor 2 (Wall) Combined

Fig. 10. Combining multiple anchor-relative location distributions into one
global distribution. The anchor object is highlighted in purple. Note how
the product of the two anchor-relative distributions leaves an unambiguous
signal that the bed should be in the corner (top row) and that the TV stand
should be directly across from the bed (bottom row).

We create training data for this network by randomly removing
a subset of objects from a scene, choosing an object with at least
one outgoing edge to one of the removed objects as the anchor,
and tasking it with predicting the location of that object. We also
perform data augmentation by exploiting the symmetry type of the
anchor object. For example, if the anchor has a left/right reflectional
symmetry, we randomly choose whether to reflect the input image
across the anchor’s symmetry plane. More generally, a symmetry
type implies the object has some number of equivalent coordinate
frames, and we pick one of them at random during training.

Orientation and dimensions To propose orientations and physi-
cal dimensions for objects, we also adopt the image-based modules
from previous work [Ritchie et al. 2019]. These are conditional vari-
ational autoencoders (CVAEs) which take a top-down scene image
as input (centered on the object in question) and output either a

FCN Output CFCN Output

Fig. 11. Output of the previous unconditional fully convolution network
(FCN) compared with our edge-conditional CFCN. The FCN predicts mostly
plausible locations, but is oblivious to the structure of the graph and thus
likely to suggest constraint-violating locations. Once again, anchor objects
(e.g. edge start nodes) ar highlighted in purple in the righthand column.

front-facing vector or 2D projected bounding box dimensions for the
object. One could imagine modifying these networks to make them
graph-aware, in a similar manner to the location module described
above. However, we found this extra complexity not to be necessary,
as the object’s location and spatial context tend to provide sufficient
conditioning information to make reasonable choices.

Backtracking: Even with the neurally-guided location sampling
procedures described above, instantiating objects in the order pre-
scribed by Section 6.1 can still lead to scenes which do not satisfy all
the relationships given by the graph. This becomes more likely as
the number of graph edges (and hence the number of constraints) in
the graph increases. Thus, we use a backtracking search procedure
to roll back previously-instantiated objects when faced with a con-
straint that cannot be satisfied. Appendix B provides more details
on our backtracking policy. As part of this policy, we also allow the
search process to begin violating constraints as it accumulates a
large number of backtracking steps. This is sometimes necessary
to instantiate a graph at all, as our graph generative model does

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

PlanIT: Planning and Instantiating Indoor Scenes with Relation Graph and Spatial Prior Networks • 132:11

Method Rejections Backtracks Violations Time

Random Location Sample 0.283 13.017 0.739 45.167
FCN-based Location sample 0.050 9.317 0.453 19.367

CFCN + All Heuristics 0.067 3.767 0.057 10.783

No Pruning 0.067 19.067 1.704 46.429
Half Pruning 0.083 10.283 0.475 20.889
No Constraint Based Ordering 0.117 6.133 0.153 17.505

Table 3. Evaluating the performance of different location sampling methods
(Top) and different graph generation/instantiation strategies (Bottom) in
terms of the average number of uninstantiable graphs (Rejections), the aver-
age number of backtracking steps initiated per object insertion (Backtracks),
the average number of graph constraints violated in the final output scene
(Violations), and the average time taken in seconds to instantiate a scene
(Time).

not (and in general cannot) guarantee that the graphs it outputs
are physically realizable. Appendix B also describes our policy for
this form of constraint relaxation, which quantifies the extent to
which an object is in violation of its constraints and allows this
value to gradually increase as a function of the number of times
that attempting to instantiate the object has led to backtracking.

Table 3 shows some statistics for our backtracking search procedure
on bedrooms. We report the frequency of rejected insertions, back-
tracking steps, and constraint violations in final graphs. To provide
baselines, we perform an ablation study in which we use search with
no neural guidance (i.e. random sampling of object configurations),
the non-conditional FCN which is oblivious to the graph, and using
our edge-conditional CFCN. Performance on all metrics improves
with more specific neural guidance. Similarly, our edge pruning
and constraint-based ordering heuristics have significant impact
on backtracking performance. Removing them, or using a pruning
threshold that is half as strict, leads to worse performance.

7 RESULTS & EVALUATION
In this section, we present qualitative and quantitative results demon-
strating the utility of the PlanIT approach to scene synthesis and
comparing it to prior scene synthesis methods.

Synthesizing new scenes: Figure 1 shows scenes synthesized by
PlanIT, along with their corresponding graphs. The graph represen-
tation contains information that allows the instantiation phase to re-
alize otherwise challenging layouts, such as the chains of wardrobes
and kitchen cabinets, or the office chairs tucked between desks and
walls. As mentioned earlier in Section 6, a relationship graph usu-
ally does not uniquely specify a scene. To illustrate this visually,
Figure 12 shows examples of instantiating the same graph multiple
times. We also evaluate the generalization behavior of our model
by computing the average similarity of a generated scene to its most
similar scene in the training set [Ritchie et al. 2019]. The average
similarity is 0.781 ± 0.049. For reference, the average similarity of
a training set scene to the most similar other scene in the training
set is 0.804 ± 0.061). This indicates that our model does not simply
memorize, and that it generates scenes with at least as much internal
diversity as the training scenes.

Partial graph completion: Because it instantiates scenes object-
by-object, PlanIT supports completion of partial scenes, as does
prior work [Ritchie et al. 2019]. One unique property of PlanIT,
however, is that it also supports synthesis from a partial graph. The
ability to synthesize a scene from a high-level partial specification of
what it should contain can be useful, for example in dialogue-based
interfaces (e.g. when designing a bedroom for twins: “show me
bedrooms with two single beds and a nightstand between them”).
Figure 13 shows some examples of synthesis by partial graph com-
pletion. This is similar to partial scene completion, but the input
need not specify the geometry or even the placement of the initial
objects. Prior object-centric scene synthesis methods either do not
support partial structure completion [Li et al. 2018a] or must invoke
a more expensive optimization process to do so [Zhang et al. 2018].

Perceptual Study: As our first quantitative evaluation of scenes
generated by PlanIT, we conducted a two-alternative forced choice
(2AFC) perceptual study onAmazonMechanical Turk comparing im-
ages of its scenes to those generated by other methods. Participants
were shown two top-down scene images side by side and asked
to pick the more plausible one. These images were rendered using
solid colors for each object category, to factor out effects of material
appearance. For each comparison and each room type, we recruited
10 participants. Each participant performed 55 comparisons; 5 of
these were “vigilance tests” comparing against a randomly jumbled
scene (i.e. the random scene should always be dis-preferred). We
filtered out participants who did not pass all vigilance tests.

Table 4 shows the results of this experiment. PlanIT consistently
outperforms GRAINS, the previous state-of-the-art object-centric
scene synthesis system. When compared to the Fast & Flexible
image-based method, PlanIT is comparable across most scenes (i.e.
differences are not statistically significant). With the exception of
living rooms, PlanIT’s output scenes do not fare as well when com-
pared to scenes created by people. These results suggest that the
PlanIT can deliver comparable output quality to other state-of-the-
art methods, while also supporting new applications and usage
modes. However, the constraint satisfaction problems imposed by
generated relationship graphs are still difficult to solve, and thus
PlanIT is not yet at the level of human-like scene design capabilities.

Real vs. Synthetic Classification Experiment: In addition to
asking people for their preferences, we also ask machines: we train
a classifier to distinguish between “real” scenes (from the training
set) and “synthetic” scenes (generated by a learned model). We adopt
the same experiment settings as prior work [Ritchie et al. 2019]:
we use a Resnet34 that takes as input the same top-down scene
representation used by the location suggestion FCN from Section 6.2,
and render all scenes into the same representation before feeding
them to the classifier. The classifier is trained with 1600 scenes, half
from the training set and half generated. We evaluate accuracy on
320 held out test scenes.
Table 5 shows the results of this experiment. Our method per-

forms similarly to the previous image based methods. It is not sur-
prising PlanIT is not in first place on this metric. After all, the graphs

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

132:12 • Kai Wang, Yu-an Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and Daniel Ritchie

Fig. 12. A graph does not uniquely describe a scene; here we show multiple
instantiations of the same graph.

Fig. 13. Completed scenes from a partial graph manually constructed from
a natural language description. Top: two single beds by the bottom wall,
with a floor lamp in between; Bottom: An office with a desk near a wall and
some plants. Our model is able to synthesize a variety of scenes that adhere
to the description.

Ours vs.

Room Type GRAINS Fast & Flexible SUNCG

Bedroom 59.3 ± 4.3 48.2 ± 4.4 44.1 ± 4.8
Living 82.9 ± 3.4 45.9 ± 6.6 44.9 ± 5.2
Office 76.3 ± 5.6 57.4 ± 5.1 41.3 ± 6.6
Bathroom — 42.8 ± 4.4 34.0 ± 4.0
Kitchen — 51.2 ± 5.1 29.9 ± 4.2

Table 4. Percentage (± standard error) of forced-choice comparisons in
which scenes generated by our method are judged as more plausible than
scenes from another source. Higher is better. Bold indicate our scenes are
preferred with > 95% confidence; gray indicates our scenes are dis-preferred
with > 95% confidence; regular text indicates no preference. — indicates
unavailable results.

Method Accuracy

Deep Priors [2018] 84.69
Fast & Flexible [2019] 58.75
Ours 63.13

Table 5. Real vs. synthetic classification accuracy for scenes generated by
different methods. Lower (closer to 50%) is better. Adapted from [Ritchie
et al. 2019], Table 2.

⇒

⇓

⇐

Fig. 14. Our approach can be used to generate specific, task-relevant scenes
for use in 3D simulation. In this example, we generate a bedroom with a
nightstand and lamp. Then we use the MINOS [Savva et al. 2017] simulator
to extract frames for color, depth and semantic segmentation during a
navigation trajectory where the goal is to locate the lamp on the nightstand
(sequence is clockwise from top left to bottom left).

Fig. 15. Typical failure cases for our model. From left to right: TV stand
blocks access to part of the room; loudspeakers placed behind TV stand
instead of beside it; this particular desk cannot be accessed when used in a
corner; failure to precisely arrange dining chairs around the table.

it generates are based on training graphs which pruned out many
edges. Essentially, we have discarded some noise which is in the
data, and the classifier is likely picking up on the fact that this noise
is missing.

Timing:We train and evaluate ourmodel on a 12-core Intel i7-6850K
machine with 32GB RAM and an NVIDIA GTX 1080Ti GPU. The
graph generative model is trained on the CPU; this takes 15 hours
for bedrooms, kitchens and toilets, and 10 hours for living rooms
and offices. The other modules are trained on the GPU, following
suggestions by [Ritchie et al. 2019].
At test time, it takes ≈ 0.2 seconds to sample a graph. It takes

on average 10 seconds to instantiate a graph, with graphs requir-
ing minimal backtracking taking ≈ 1.5s and graphs with repeated
backtracking taking up to 1 minute.

Generating Custom Virtual Agent Training Environments:
Partial graphs can be used to specify objects that must be present
in a scene, thus allowing us to generate custom scenes that can be
useful when specific tasks need to be performed in 3D simulation.
Figure 14 shows an example.

8 CONCLUSION
In this paper, we presented PlanIT, a new conceptual framework for
layout generation which decomposes the problem into two stages:
planning and instantiation. We demonstrated a concrete implemen-
tation of the PlanIT framework for the domain of indoor scene syn-
thesis. Our method plans a scene by generating an object relation
graph, and then it instantiates that scene by sampling compatible

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

PlanIT: Planning and Instantiating Indoor Scenes with Relation Graph and Spatial Prior Networks • 132:13

object configurations. To provide training data for our system, we
described a heuristic approach for extracting relationship graphs
from unstructured scenes. We then described a generative model for
such graphs, based on deep graph convolutional networks. Finally,
we showed how to instantiate a relationship graph by searching
for object configurations that satisfy the graph’s constraints, using
image-based convolutional networks. PlanIT’s two-stage synthesis
approach leads to more modeling flexibility and applicability to
more use cases, and our experimental results show that this adding
flexibility does not come at the cost of decreased output quality.

Our method is not without its limitations. Figure 15 shows some
failure cases of our model. These arise from the instantiation mod-
ule not modeling the functionality of objects and spaces (left) and
making placement errors that deviate from a strict expected arrange-
ment template. These could be addressed by adding “empty space”
as a first-class entity in the model and by refining our treatment of
superstructures to guarantee more precise arrangements.
Our results also depend critically on the quality of the training

graphs extracted from the input scene dataset. Our process for de-
termining which edges to include in the graphs is heuristic. While
we believe our design choices are justified, our graph extraction
step could very well filter out important relationships or include
spurious ones. What are the most salient relationships in a scene?
This question has different answers, depending on one’s interpre-
tation. Do we care about what is most salient to a machine trying
to instantiate the graph? Or what is most salient to a person trying
to specify a scene via a graph? Is it possible to learn how to extract
good relationship graphs, perhaps by using reinforcement learning
to extract graphs which lead to graph generative models with high
performance on some metric? Further research is needed here.

Our graph representation itself is also limited by the small set of
relationships it encodes. Support relationships and frequent spatial
relationships only scratch the surface of what is possible in terms
of analyzing the functionality of 3D objects and scenes [Hu et al.
2018]. Fortunately, as our graph generative model architecture is
quite general, our relationship graph format is quite extensible. It
would be interesting to explore augmenting it with more nuanced
functional relationships (e.g. containment, affordances for human
activity) to help constrain scene synthesis toward producing more
usable and interactive interior spaces.
Dividing the scene synthesis problem into two phases, with an

intermediate graph representation, makes PlanIT flexible and appli-
cable to more use cases. But it also turns scene instantiation into
a constraint satisfaction problem, which takes time to solve. If we
give up the ability to synthesize scenes from complete or partial
graphs, and instead focus on synthesizing scenes from scratch, could
we combine the graph generation and scene instantiation phases?
That is, could one design a tightly-integrated generative model that
generates a graph while instantiating a scene from it in lock-step,
where each representation provides feedback to the other? This
seems like a fruitful direction for future work.

There are also many opportunities to extend and apply a system
like PlanIT. For example, it would be valuable to develop a natural
language interface for constructing partial input graphs, as alluded
to earlier. What type of language must such a system support to
be useful? What graph representation maps most naturally to this

language? There exists prior work in language-based scene cre-
ation [Chang et al. 2015, 2014], including recent work that uses a
graph-based intermediate representation [Ma et al. 2018a]. However,
it constructs scenes by retrieving parts of scenes from a database;
new possibilities are opened up by a system that can synthesize
truly new scenes from a partial graph.

Last but not least, it is important to explore the applicability of the
PlanIT framework to other layout generation applications. Layout is
a critical subproblem in many graphics and design domains. Could
one build a graph-based plan-and-instantiate framework for pro-
ducing constrained web designs, or other types of graphic designs?
The hybrid nature of our framework could be very useful: the graph
could dictate the functional layout of design elements, while the
image-based priors could focus on aesthetic concerns.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful suggestions.
Scene renderings shown in this paper were created using the Mit-
suba physically-based renderer [Jakob 2010]. This work was sup-
ported in part by NSF award #1753684, a hardware donation from
Nvidia, and with the support of the Technical University of Munich-
Institute for Advanced Study, funded by the German Excellence
Initiative and the European Union Seventh Framework Programme
under grant agreement no 291763.

REFERENCES
Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. 2016. Spice: Se-

mantic propositional image caption evaluation. In European Conference on Computer
Vision (ECCV). Springer, 382–398.

Martin Bokeloh, Michael Wand, and Hanspeter Seidel. 2010. A connection between
partial symmetry and inverse procedural modeling. In SIGGRAPH 2010.

Angel Chang, Will Monroe, Manolis Savva, Christopher Potts, and Christopher D.
Manning. 2015. Text to 3D Scene Generation with Rich Lexical Grounding. In ACL
2015.

Angel X Chang, Manolis Savva, and Christopher D Manning. 2014. Learning Spa-
tial Knowledge for Text to 3D Scene Generation. In Empirical Methods in Natural
Language Processing (EMNLP).

Chaos Group. 2018. Putting the CGI in IKEA: How V-Ray Helps Visualize Per-
fect Homes. https://www.chaosgroup.com/blog/putting-the-cgi-in-ikea-how-v-ray-
helps-visualize-perfect-homes. Accessed: 2018-10-13.

Kang Chen, Yukun Lai, Yu-Xin Wu, Ralph Robert Martin, and Shi-Min Hu. 2014. Au-
tomatic semantic modeling of indoor scenes from low-quality RGB-D data using
contextual information. ACM Transactions on Graphics 33, 6 (2014).

Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed, Jürgen Sturm, and Matthias
Nießner. 2018. ScanComplete: Large-Scale Scene Completion and Semantic Seg-
mentation for 3D Scans. In Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv
Batra. 2018. Embodied Question Answering. In CVPR.

P. Erdos and A Renyi. 1960. On the Evolution of Random Graphs. In PUBLICATION OF
THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES.
17–61.

Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Hanrahan.
2012. Example-based Synthesis of 3D Object Arrangements. In SIGGRAPH Asia
2012.

Matthew Fisher, Manolis Savva, Yangyan Li, Pat Hanrahan, and Matthias Nießner. 2015.
Activity-centric Scene Synthesis for Functional 3D Scene Modeling. (2015).

Qiang Fu, Xiaowu Chen, Xiaotian Wang, Sijia Wen, Bin Zhou, and Hongbo Fu. 2017.
Adaptive Synthesis of Indoor Scenes via Activity-associated Object Relation Graphs.
In SIGGRAPH Asia 2017.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
2017. Neural Message Passing for Quantum Chemistry. CoRR arXiv:1704.01212
(2017).

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter
Fox, and Ali Farhadi. 2018. IQA: Visual Question Answering in Interactive Environ-
ments. In CVPR.

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

132:14 • Kai Wang, Yu-an Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and Daniel Ritchie

R. Hu, M. Savva, and O. van Kaick. 2018. Functionality Representations and Applications
for Shape Analysis. Computer Graphics Forum 37, 2 (2018), 603–624.

Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola. 2018. Junction Tree Variational

Autoencoder for Molecular Graph Generation. In ICML 2018.
Justin Johnson, Agrim Gupta, and Li Fei-Fei. 2018. Image generation from scene graphs.

In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR).

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael
Bernstein, and Li Fei-Fei. 2015. Image retrieval using scene graphs. In Proceedings of
the IEEE conference on computer vision and pattern recognition (CVPR).

Z. Sadeghipour Kermani, Z. Liao, P. Tan, and H. Zhang. 2016. Learning 3D Scene
Synthesis from Annotated RGB-D Images. In Eurographics Symposium on Geometry
Processing.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. CoRR abs/ 1609.02907 (2016).

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. 2017. Vi-
sual genome: Connecting language and vision using crowdsourced dense image
annotations. International Journal of Computer Vision 123, 1 (2017), 32–73.

Danny Lange. 2018. Unity and DeepMind partner to advance AI research. https://blogs.
unity3d.com/2018/09/26/unity-and-deepmind-partner-to-advance-ai-research. Ac-
cessed: 2018-10-13.

Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir,
Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. 2018a. GRAINS:
Generative Recursive Autoencoders for INdoor Scenes. CoRR arXiv:1807.09193
(2018).

Yikang Li, Wanli Ouyang, Bolei Zhou, Kun Wang, and Xiaogang Wang. 2017. Scene
graph generation from objects, phrases and region captions. In ICCV.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018b. Learning
deep generative models of graphs. CoRR abs/1803.03324 (2018).

Tianqiang Liu, Siddhartha Chaudhuri, Vladimir G. Kim, Qi-Xing Huang, Niloy J. Mi-
tra, and Thomas Funkhouser. 2014. Creating Consistent Scene Graphs Using a
Probabilistic Grammar. In SIGGRAPH Asia 2014.

Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. 2016. Visual relationship
detection with language priors. In European Conference on Computer Vision (ECCV).
Springer, 852–869.

Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li, SÃűren Pirk, Binh-Son Hua,
Sai-Kit Yeung, Xin Tong, Leonidas Guibas, and Hao Zhang. 2018a. Language-driven
synthesis of 3D scenes from scene databases. In SIGGRAPH Asia 2018.

Rui Ma, Akshay Gadi Patil, Matt Fisher, Manyi Li, Soren Pirk, Binh-Son Hua, Sai-Kit
Yeung, Xin Tong, Leonidas J. Guibas, and Hao Zhang. 2018b. Language-Driven
Synthesis of 3D Scenes Using Scene Databases. ACM Transactions on Graphics 37, 6
(2018).

Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen Koltun. 2011.
Interactive Furniture Layout Using Interior Design Guidelines. In SIGGRAPH 2011.

Vittorio Ferrari Paul Henderson, Kartic Subr. 2018. Automatic Generation of Con-
strained Furniture Layouts. CoRR arXiv:1711.10939 (2018).

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville.
2018. FiLM: Visual Reasoning with a General Conditioning Layer. In AAAI 2018.

Planner5d. 2017. Home Design Software and Interior Design Tool ONLINE for home
and floor plans in 2D and 3D. https://planner5d.com. Accessed: 2017-10-20.

Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu. 2018.
Human-centric Indoor Scene Synthesis Using Stochastic Grammar. In Conference on
Computer Vision and Pattern Recognition (CVPR).

Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah D. Goodman. 2016. Neurally-
Guided Procedural Models: Amortized Inference for Procedural Graphics Programs
using Neural Networks. In NIPS 2016.

Daniel Ritchie, Kai Wang, and Yu an Lin. 2019. Fast and Flexible Indoor Scene Synthesis
via Deep Convolutional Generative Models. In CVPR 2019.

RoomSketcher. 2017. Visualizing Homes. http://www.roomsketcher.com. Accessed:
2017-11-06.

Grzegorz Rozenberg (Ed.). 1997. Handbook of Graph Grammars and Computing by
Graph Transformation: Volume I. Foundations. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA.

Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd
ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.

Manolis Savva, Angel X. Chang, Alexey Dosovitskiy, Thomas Funkhouser, and Vladlen
Koltun. 2017. MINOS: Multimodal Indoor Simulator for Navigation in Complex
Environments. arXiv:1712.03931 (2017).

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. 2017. Semantic Scene Completion from a Single Depth Image. CVPR
2017.

Ashwin J. Vijayakumar, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek
Jain, and Sumit Gulwani. 2018. Neural-Guided Deductive Search for Real-Time
Program Synthesis from Examples. In ICLR 2018.

Kai Wang, Manolis Savva, Angel X. Chang, and Daniel Ritchie. 2018. Deep Convolu-
tional Priors for Indoor Scene Synthesis. In SIGGRAPH 2018.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. 2017. Scene graph generation
by iterative message passing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Vol. 2.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhut-
dinov, Richard S. Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention. CoRR arXiv:1502.03044 (2015).

Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. 2013. Sketch2Scene:
Sketch-based Co-retrieval and Co-placement of 3D Models. In SIGGRAPH 2013.

Ken Xu, James Stewart, and Eugene Fiume. 2002. Constraint-based automatic placement
for scene composition. In Graphics Interface, Vol. 2. 25–34.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial Temporal Graph Convolutional
Networks for Skeleton-Based Action Recognition. In AAAI.

Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. 2018. Graph r-cnn
for scene graph generation. In Proceedings of the European Conference on Computer
Vision (ECCV). 670–685.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay S. Pande, and Jure Leskovec. 2018a. Graph
Convolutional Policy Network for Goal-Directed Molecular Graph Generation. In
NeurIPS 2018.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. 2018b.
GraphRNN: A Deep Generative Model for Graphs. In ICML 2018.

Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F. Chan, and
Stanley J. Osher. 2011. Make It Home: Automatic Optimization of Furniture Ar-
rangement. In SIGGRAPH 2011.

Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. 2018. Neural Motifs:
Scene Graph Parsing with Global Context. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 5831–5840.

Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo, Alexander Huth, Etienne
Vouga, and Qixing Huang. 2018. Deep Generative Modeling for Scene Synthesis via
Hybrid Representations. CoRR arXiv:1808.02084 (2018).

A GRAPH EXTRACTION HEURISTICS
This appendix provides more detail about the automatic heuris-
tics we use for extracting relationship graphs from 3D scenes. The
complete source code for this procedure is also available online at
https://github.com/brownvc/planit.

A.1 Detecting “Superstructures”
The rules for detecting and extracting superstructures are:

Hub-and-spokes: We detect hubs by searching for graph nodes
with multiple outbound edges to nodes representing smaller objects
of the same category. Such a node is a hub if the arrangement of those
neighbor nodes (spokes) is invariant under the node’s symmetry
group (e.g. a spoke to the left and a spoke to the right, for a node
with left-right reflectional symmetry). The hub node inherits all
the inbound edges of its spokes. The spokes in turn discard any
inbound edges except for the edge from the hub and any adjacent
relationships. The reasoning here is that the hub is the primary cue
for the placement of the spokes; the only other relevant information
to maintain is whether the spokes are directly adjacent to any other
objects.

Chain: We detect two variants of ‘chain” structures. First, we de-
tect any sequence of three or more object nodes of a similar size
connected by adjacent edges in the same direction. This condition
captures functional arrangements where a larger structure is assem-
bled from multiple contiguous parts (e.g. kitchen cabinetry). We
also detect any sequence of three or more instances of the same
object connected by proximal edges in the same direction. This con-
dition captures commonly-occurring structures with more aesthetic
purpose (e.g. a row of plants). Since the spatial configuration of the

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

https://blogs.unity3d.com/2018/09/26/unity-and-deepmind-partner-to-advance-ai-research
https://blogs.unity3d.com/2018/09/26/unity-and-deepmind-partner-to-advance-ai-research
https://github.com/brownvc/planit

PlanIT: Planning and Instantiating Indoor Scenes with Relation Graph and Spatial Prior Networks • 132:15

chain is completely determined by its start and end nodes, chain
intermediate nodes discard all of their inbound edges and inherit
whatever inbound edges are common to both the start and end node.

A.2 Edge Pruning
The rules for pruning the initial set of extracted graph edges are:

Kept edges:We always retain support edges, wall→ object adjacent
edges, and superstructure edges, as these are critically important for
determining object placement. In an effort to retain edges that reflect
layout intentionality, we also retain all adjacent edges between
objects of the same category, as well proximal edges originating
from an object with a unique front direction (i.e. not symmetric or
left-right reflectionally symmetric). These latter edges correspond
to an object “pointing at” something nearby (e.g. arm chair pointing
at a television).

Deleted edges: We always delete wall→ object edges that are not
adjacent, to reduce the overwhelmingly large number of such edges
(44 – 59% of all ‘→ object’ edges in the initial graphs, depending
on room type). There are also many occurrences of ‘double edges,’
i.e. both the edges A→ B and A← B exist. We break these cycles
by choosing only one of the edges. If the categories of A and B
are different, we orient the edge from largest-to-smallest object.
Otherwise (if the categories are the same), we prefer front edges
over back and right over left.

Data-driven pruning: Deleting the above edges still leaves the
graph with too many relationships. To address this issue, we look
to the statistics of our large scene dataset: a relationship A→ B is
significant if it occurs in a significant percentage of scenes in which
objects of category A and B both occur. Otherwise, we prune the
edge. We use separate, increasing percentage thresholds for each
distance level (3% for adjacent; 8% for proximal; 30% for distant),
reflecting the intuition that e.g. a distant relationship must occur
much more commonly than an adjacent relationship before we
believe that it is intentional.

A.3 Guaranteeing Connectivity
We guarantee that extracted graphs are connected by finding all
unreachable nodes and reconnecting them to the graph by searching
in the original, unpruned graph for the minimum-cost path from
any wall to that node. To define the cost of a path, we say that any
path which induces a cycle in the graph has a higher cost than any
path that does not; otherwise, the cost of a path is the sum of its
edge costs. We prefer edges that are already in our pruned graph,
followed by adjacent edges and then proximal edges (provided they
flow from larger→ smaller objects), and finally distant edges (with
shorter distances preferred). Due to this cycle-avoidance behavior,
our final extracted graphs are acyclic (with the exception of a few
kitchen scenes, which are dense with chains and adjacent edges
between e.g. contiguous counter segments).

B BACKTRACKING DETAILS
This appendix provides more detail about the backtracking search
procedure we use to instantiate scenes. The complete source code
for this procedure is also available online at https://github.com/
brownvc/planit.

Our backtracking policy is to re-sample a previously-instantiated
object when our object insertion models fail to find a satisfying
insertion (due to collision, constraint violation, or too much over-
hang for second-tier objects) for an object ≈ 10 times, decreasing as
the number of sample attempts at the current object increases. We
backtrack to the closest object, prior in the insertion order described
in Section 6.1, that has resulted in a insertion failure. To prevent
repeated rejections due to the module repeatedly resampling the
same bad configuration, when an insertion point is rejected, we
zero out the probability around that point in the CFCN-predicted
location distribution. This starts with 0.6m × 0.6m, and gradually
increases as number of backtracks increases.

Constraint relaxation Our scheme for constraint relaxation is as
follows: we maintain a constraint violation cost for each object (mea-
suring how much it violates all of its adjacent relationship edges),
which is computed based on the same geometric predicates and
visibility computations that we described in Section 4. It starts with
0 with no violations, and caps at 1 if either the object is completely
invisible/occluded or if it is more than a certain distance away from
the distance threshold. If a node has more than one constraint, a to-
tal score of 1 is distributed uniformly to each. We allow no violation
for the first 1/4 of the maximum allowed steps, and allow nodes
to carry a higher cost as a quadratically increasing function of the
number of backtracking steps that have been performed, capped
at 1. By doing so, we will start with allowing small violations to
visibility and distance, followed by allowing complete violation of
one of many constraints, etc. We never allow all constraints to a
node to be completely violated (i.e. a cost of 1). If that happens, the
instantiation process fails.

ACM Trans. Graph., Vol. 38, No. 4, Article 132. Publication date: July 2019.

https://github.com/brownvc/planit
https://github.com/brownvc/planit

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Overview
	4 Turning Scenes into Relation Graphs
	4.1 Dataset
	4.2 Graph Representation
	4.3 Graph Extraction

	5 Graph Generation
	5.1 Autoregressive Graph Generation via Message-Passing Graph Convolution
	5.2 Generative Model of Scene Relationship Graphs

	6 Scene Instantiation
	6.1 Object Instantiation Order
	6.2 Neurally-Guided Object Instantiation

	7 Results & Evaluation
	8 Conclusion
	References
	A Graph Extraction Heuristics
	A.1 Detecting ``Superstructures''
	A.2 Edge Pruning
	A.3 Guaranteeing Connectivity

	B Backtracking Details

